

USB 3.2 GEN 1 Disk Module Specification

(U1-C)

Version 0.1

Specifications subject to change without notice, contact your sales representatives for the most update information.

Table of Contents

Α.	General Description	3
В.	System Features	4
C.	General Description	5
D.	System Power Consumption	6
E.	Performance	6
F.	TBW (Terabytes Written)	6
G.	Electrical Specifications	7
Н.	DC Characters	8
I.	Dimension (Unit: mm)	9

Revision History

Revision	History	Draft Date
0.1	First Release	2021/6/10

Advantech reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Advantech is believed to be accurate and reliable. However, Advantech does not assure any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

Copyright © 1983-2021 Advantech Co., Ltd. All rights reserved.

A. General Description

The SQF-UPD is a super speed USB 3.2 GEN 1 removable flash disk drive with USB 3.2 GEN 1 connection (backward compatible with USB 2.0/1.1) and supports various storage capacities.

SQF-UPD is compatible with all USB specification (USB 1.1 / USB 2.0 / USB 3.2 GEN 1). It is a plug and play device, simply plug it into any USB port and it will automatically get detected by the computer. Now you can read, write, copy, delete and move data from your hard disk drive to SQF-UPD or from SQF-UPD to your hard disk drive with the super speed of USB 3.2 GEN 1.

SQF-UPD is so compact that you can take it with you anywhere in your pocket. With the high capacity of the SQF-UPD, you can use it as an external removable hard drive. Now, you don't have to carry a laptop computer with you to work if you have access to a computer. "Bring your data only." Moreover, SQF-UPD does not require any battery, cables or software drivers. It is compatible with any desktop or notebook computers with USB port. Experience the light weighted, compact design, super performance and fast data transfer with SQF-UPD.

REV 0.1 Page 3 of 11 Jun. 10, 2021

B. System Features

- Compatible with USB specification revision 3.2 gen 1 and backward compatible with USB 2.0 & USB 1.1
- Support Windows Vista and Windows XP without device driver.
- Support Windows 7, Windows 8 and Windows 10 without device driver.
- Support MAC OS X and later without device driver. (USB 1.1 speed)
- Support MAC OS 10.2.8 and later without device driver. (USB 2.0 speed)
- Support MAC OS 10.8 and later without device driver. (USB 3.2 GEN 1 speed)
- Support Linux Kernel ver 2.4.0 or above without device driver. (USB 1.1 speed)
- Support Linux Kernel ver 2.4.10 or above without device driver. (USB 2.0 speed)
- Toggle 2.0 / ONFI 3.0 NAND support
- LDPC ECC engine embedded
- High performance with small form factor PCBA.
- Low power consumption.
- Hot Plug & Play without driver installation.
- Powered by USB port, no external power is required.
- Transfer rate for USB interface :
 - Super speed up to 5Gbit/sec for USB 3.2 GEN 1
 - High speed up to 480Mbits/sec for USB 2.0
 - Full speed up to 12Mbits/sec for USB 1.1
- Operating temperature : 0°C to 70°C
- Humidity : 20% to 90%

C. General Description

■ Bad Block Management

Bad blocks are blocks that contain one or more invalid bits of which the reliability is not guaranteed. Bad blocks may be representing when flash is shipped and may developed during life time of the device.

Advantech SQFlash UDM implement an efficient bad block management algorithm to detect the factory produced bad blocks and manages any bad blocks that may develop over the life time of the device. This process is completely transparent to the user, user will not aware of the existence of the bad blocks during operation.

■ Wear Leveling

NAND Type flash have individually erasable blocks, each of which can be put through a finite number of erase cycles before becoming unreliable. It means after certain cycles for any given block, errors can be occurred in a much higher rate compared with typical situation. Unfortunately, in the most of cases, the flash media will not been used evenly. For certain area, like file system, the data gets updated much frequently than other area. Flash media will rapidly wear out in place without any rotation.

Wear leveling attempts to work around these limitations by arranging data so that erasures and re-writes are distributed evenly across the full medium. In this way, no single sector prematurely fails due to a high concentration of program/erase cycles.

Advantech SQFlash UDM provides advanced wear leveling algorithm, which can efficiently spread out the flash usage through the whole flash media area. By implement both dynamic and static wear leveling algorithms, the life expectancy of the flash media can be improved significantly.

■ Error Detection / Correction

Advantech SQFlash UDM utilizes BCH ECC Algorithm which offers one of the most powerful ECC algorithms in the industry. Built-in EDC/ECC up to 12 random bits error per 512 bytes.

Sophisticate Product Management Systems

Since industrial application require much more reliable devices compare with consumer product, a more sophisticated product management system become necessary for industrial customer requirement. The key to providing reliable devices is product traceability and failure analysis system. By implement such systems end customer can expect much more reliable product.

D. System Power Consumption

(mA)		Read	Write	Normal	Suspend
	32 GB	239.30	200.41	65.51	0.702
3D TLC	64 GB	249.50	204.77	65.83	0.705
(BiCS4)	128 GB	249.84	236.87	66.45	0.729
	256 GB	260.65	251.74	68.82	0.829

The above values are for reference only; it may change according to the flash memory used.

E. Performance

	Capacity	Performance (CrystalDisk Mark)		
		Read (MB/s)	Write (MB/s)	
	32 GB	220	30	
3D TLC	64 GB	220	30	
(BiCS4)	128 GB	220	60	
	256 GB	220	100	

F. TBW (Terabytes Written)

	Capacity	TBW (Bases on Sequential data pattern)
	32 GB	27
3D TLC	64 GB	54
(BiCS4)	128 GB	109
	256 GB	219

REV 0.1 Page 6 of 11 Jun. 10, 2021

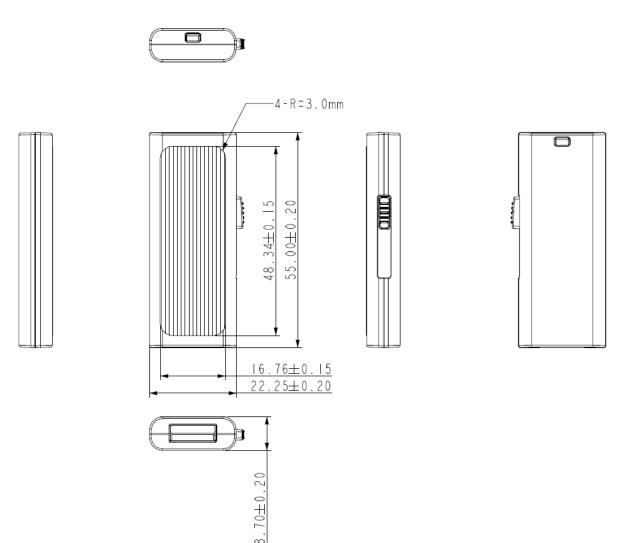
G. Electrical Specifications

Absolute Maximum Rating

Parameter	Min	Тур	MAX	Unit
Operating Temperature (Commercial)	0	+25	+70	$^{\circ}\!\mathbb{C}$
Storage Temperature (Commercial)	-25	+25	+85	$^{\circ}\!$
Operating Temperature (Industrial)	-40	+25	+85	$^{\circ}\! \mathbb{C}$
Storage Temperature (Industrial)	-50	+25	+125	$^{\circ}\! \mathbb{C}$
1.1V regulator power supply	1.04	1.12	1.20	V
1.8V regulator power supply	1.76	1.86	2.0	V
3.3V Regulator Power Supply	3.15	3.3	3.45	V
5.0V Regulator Power Supply	3.0	5.0	5.5	V
2.5V regulator power supply	2.35	2.5	2.7	V
1.2V regulator power supply	1.13	1.2	1.3	V

REV 0.1 Page 7 of 11 Jun. 10, 2021

H. DC Characters


DC characteristics of I/O cells

Symbol	Parameter	Conditions	MIN	TYP	MAX	Unit
VCCK	Core Power Supply	Core Area	0.99	1.1	1.21	V
	11.7	1.8V I/O	1.62	1.8	1.98	V
V(CC)1C	Dawar Cumhi	1.2V I/O	1.13	1.2	1.3	V
VCC3IO	Power Supply	3.3V I/O	3.0	3.3	3.6	V
		2.5V I/O	2.35	2.5	2.7	V
Temp	Junction Temperature	0	25	115	$^{\circ}\!\mathbb{C}$	Temp
	Schmitt Trigger		0.35	* VCC3I	0	
VIL	CMOS Trigger		0.5	* VCC3I)	V
	Differential	VCC2IC 2 2V	PA			
	Schmitt Trigger	VCC3IO=3.3V	0.65 * VCC3IO			V
ViH	CMOS Trigger		0.5 * VCC3IO			
	Differential		PAD_VREF			
	Schmitt Trigger		0.41	* VCC3I	0	
VIL	V _{IL} CMOS Trigger	053 * VCC3IO			V	
	Differential	VCC3IO=1.8V	PAD_VREF			
	Schmitt Trigger		0.69 * VCC3IO			
ViH	CMOS Trigger		0.53 * VCC3IO			V
	Differential		PA	PAD_VREF		
Vol	Output Low voltage	IoI = 2 ~ 16 mA			0.4	V
Vон	Output High voltage	loh = 2 ~ 16 mA	VCC3IO- 0.4			V
R_pu	Input Pull-Up Resistance	PU=high, PD=low		75		ΚΩ
R_{pd}	Input Pull-Down Resistance	PU=high, PD=low		75		ΚΩ
l _{in}	Input Leakage Current	Vin = VCC3I or 0			10	μA
loz	Tri-state Output Leakage Current		-10	±1	10	μΑ

REV 0.1 Page 8 of 11 Jun. 10, 2021

I. Dimension (Unit: mm)

Appendix A: Product Part Number Table

Product	Advantech PN
SQF USB 3.2 GEN 1 PEN DRIVE 32G 3D TLC BiCS4, (0~70°C)	SQF-UPDV1-32GCU1C
SQF USB 3.2 GEN 1 PEN DRIVE 64G 3D TLC BiCS4, (0~70°C)	SQF-UPDV1-64GCU1C
SQF USB 3.2 GEN 1 PEN DRIVE 128G 3D TLC BiCS4, (0~70°C)	SQF-UPDV1-128GCU1C
SQF USB 3.2 GEN 1 PEN DRIVE 256G 3D TLC BiCS4, (0~70°C)	SQF-UPDV1-256GCU1C

REV 0.1 Page 10 of 11 Jun. 10, 2021